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MOLECULAR DYNAMICS SIMULATIONS

B. J. Alder
Lawrence Livermore National Laboratory
University of California
Livermore, CA 94550

The molecular dynamics computer simulation discovery of the slow decay of
the velocity autocorrelation function in fluids is briefly reviewed in order
to contrast that long time tail with those observed for the stress
autocorrelation function in fluids and the velocty autocorrelation function in
the Lorentz gas. For a non-localized particle in the Lorentz gas it is made
plausible that even if it behaved quantum mechanically its long time tail
would be the same as the classical one. The generalization of Fick's law for
diffusion for the Lorentz gas, necessary to avoid divergences due to the slow
decay of correlations, is presented. For fluids, that generalization has not
yet been established, but the region of validity of generalized hydrodynamics

is discussed.



1. INTRODUCTION

The single most important fundamental discaovery for the dynamic
properties of interacting particles by computer simulation is that the
moiecular chaos approximation is generally not valid. 1In fact, the molecular
chaos approximation, which implies that a particle after a sufficiently long
time forgets its past, or equivalently, that correlations decay exponentially,
is not valid for even the simplest models, such as a dilute gas or a Lorentz
gas. This approximation was originally introduced because it seemed physically
reasonable and because it led to a great mathematical simplification, namely
that, dynamic processes could be described by Markov processes. B8y computer
simulation, before real experiments such as neutron diffraction studies, it
was possible to investigate the decay of correlations with sufficient
resolution to show that the decay had a long time tail, corresponding to a
power law fall-off with time [1]. This discovery caused a fundamental change
in the mathematical structure with which to describe transport properties.

For example, the Boltzmann equation and the Chapman-Enskog expansion used in
its solution can be shown not to be valid for a finite density gas. This
discovery, however, also initiated a stampede that ascribed all tajls that
have been subsequently discovered to the same mechanism. The primary focus of
this report is to demonstrate the differences between various tails.

For that purpose, the tails of the Lorentz gas will be discussed since
that is the simplest model for which such tails might be analyzed, because
only the motion of a single point particle among randomly arranged fixed
scatterers js jinvolved. 1In order to contrast the tails of the Lorentz gas
with that of others that occur in fluids, however, a brief review of their
characteristics will be given. At least one of these other tails, that for

the diffusion coefficient of fluids, is due to collective phenomena; that is,
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due to the cooperative motion of the particles in the medium, which by the
very nature of the Lorentz model cannot occur in that system. The nature of
the collective mode in the diffusion case can be identified with great
confidence since a hydrodynamic model confirmed by molecular dynamic results
yielded quantitative agreement [2]. The only other important coilective
effect that was discovered by molecular dynamics in fluid transport phenomena
was in the slow decay of the stress autocorrelation function that determines
the viscosity [3]. That tail, called the molasses tail to distinguish it from
the hydrodynamic tail for diffusion, has also been analyzed by the same
methods as for diffusion with far from quantitative success. As shall be
seen, the employment of a hydrodynamic type analysis for all tails including

that for the Lorentz gas is of doubtful validity.

2. HYDRODYNAMIC TAIL

The decay of the velocity autocorrelation function,

(2.1) p(t) = (v(0)v(t)>/¢vi(o))

at intermediate fluid densitites is illustrated in Fig. la. The velocity
autocorrelation function, whose integral is the diffusion coefficient, shows a
positive persistence of velocity that can be observed for some 100

collisions. That positive tail can be quantitatively accounted for by a
hydrodynamic model in which a sphere, surrounded by a continuum fluid,
characterized by a compressibility and a viscosity, is given an initial
velocity or momentum [1]. Those initial conditions lead to a positive

pressure in the fluid ahead of the sphere that generates a sound wave and a



corresponding rarefaction wave behind. 1In addition, the positive pressure in
front and the negative pressure behind can equalize by creating a

double vortex structure around the sphere. This phenomena is vividly verified
n

by investigating the velocity field = }
3=1

by molecular dynamics [2], The velocity field is the correlation between the

Vi(o) Vj(t) surrounding the sphere,

original velocity of the sphere, i1, and the net velocity of all the particles,
j, in a surrounding volume element at some time, t, later. The agreement
between this molecular dynamically determined velocity field and the
corresponding hydrodynamic one is quantitative after some 10 collisions, or
about 10~]3 sec. The remarkable validity of hydrodynamics at this time

scale and distance scale of only a few molecular diameters will be referred to
again later. A dimensional analysis of the hydrodynamic model leads to a
quantative description of the tail. After first observing that at long times
only the vortex mode contributes since it spreads diffusively as the square
root of vt while the sound wave spreads faster, namely to further distances

as ct, where v is the kinematic viscosity, (the shear viscosity divided by
the density) and c is the speed of sound. Since momentum, (mass times
velocity = mv) is conserved, mf vdr must be a constant, where t is

the volume element, which must be integrated over the entire space to account

for all the momentum. Since t spreads as (vt)dlz, where d in the

dimensionality of the space, v must decay as (\at)"d/2

to keep the momentum
constant. The more difficult but readily doable task is to determine the
coefficient A in the power law decay of the velocity, A/(vt)d/z, since
that requires knowing how much of the momentum is carried away by the sound
wave and how much of the rest is fed back via the medium to the moving

sphere. This same power law has also been derived by graph theoretical

methods involving summation of ring diagrams [4] that have intuitively close



correspondence to vortex rings. Other derivations by mode coupling theories
[5] also have their origin in hydrodynamic arguments. Finally, a derivation
by renormalization theory has also been carried out. Not surprisingly,
renormalization theory applies since the exponent is universal, namely, it

does not depend on any of the detailed molecular properties of the system.

3. MOLASSES TAIL

The velocity autocorrelation function at higher density, near normal
1iquid density, is shown in Fig. 1b. 1In that case, the positive tail has not
been observed because it is overpowered by a negative feature in the velocity
autocorrelation function near solid densities caused by a reversal of the
velocity of a typical particle by backscattering. This effect can only be
accounted for hydrodynamically by introducing viscoelastic effects, as shall
be seen later. These significant viscoelastic effects are a reflection of the
slow decay of the stress antocorrelation function, shown in Fig. 1c., dubbed
the molasses tail. For the molasses tail, the hydrodynamic, or graph

d/2' but the

theoretical analysis [6], again leads to a tail of the form A'/t
molecular dynamics results have only established the appropriateness of the
power law over a very limited time domain and with a value of A' which is at
least an order of magnitude larger than the theoretically predicted one [7].
We beljeve that this theoretical prediction is appropriate only for the
kinetic part of the viscosity. A considerable effort to observe this tail for
the kinetic part of the viscosity failed, however, because the numerical
resolution was not high enough [8].

An investigation as to the origin of the molasses tail is underway. Just

as the diffusion coefficient can be calculated by D = <AX2)/2t =
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[, ¢K(0)X(t)>dt, so can the viscosity from n = @®r/2t = [T (G(o)b(t)rdt,

where G is the dynamic variable G = § x191 and AG = IE Gdt, the potential part of
.‘
where the dot indicates differentiation with respect to

which is § Xi; by

AR
time and the subscripts ij indicate that the two hard sphere particles i and j
are in collision . Upon differentiating G, two terms arise. The first one
involves ig and leads to the kinetic term discussed above, whose tail was found
to be unobservable. The second, or potential term, involves xy or x V', where
the acceleration has been replaced by the force, or derivative of the
potential. It is that term that develops the molasses tail but only near
solidification densities. It appears to be connected with a slow structural
adjustment in the presence of a shear. A likely mechanism for this structural
rearrangement is a slight ordering or layering of the spheres parallel to the
plane of the shear so as to reduce the resistance to flow. It is analogous to
the ordering of asymmetric molecules in the presence of a velocity gradient in
such a way that the long axis is preferentially parallel to the flow. For
spherical particles, many structural effects have been observed for colloidal
suspension in fluids and by nonequilibrium molecular dynamics calculations in
the presence of an enormous, externally imposed, shear [9]. For these
spherical particles the manifestations are a decrease in the viscosity with
shear rate, called shear thinning, which, with sufficiently high shear rate,
dramatically results in shear induced ordering or solidification.

The likely cause for the slowness of the response is that this partial
ordering process involves, at high density, a large number of particles, namely
all those within the correlation length (the distance beyond which the radial
distribution function becomes constant). The long correlation is not likely

to be between successive magnitudes of the velocity changes upon collision,



'Agij" in the expression for <AG2> since the absolute value of velocities

were founed to equilibrate fast even at high density. The hypothesis that is
being tested is that successive angles between collisions are correlated.

Formally, that means one would like to show that at long times the auto-

13943
will have an infinitely ranged correlation in

correlation of injyij and of 3x for colliding particles have the same

behavior. Certainly, injyij
the solid phase in as much as the angle between any pair of successive
collisions will stay fixed on the average even if the pairs are separated by
very large distances. This is then consistant with the known infinite
viscosity in the solid phase. Furthermore, such slow decay of correlations
have been observed already in a very similar autocorrelation function, namely
the one for dipolar density fluctuation _2. xijyij/rijs appropriatevto
depolarized light scattering ca1cu1ation;<%10], where the sum is now over all
pairs in the system, not just those in collision. Infact, that autocorrela-
tion was observed to decay even slower than that of the stress which can be
explained by noting that the dipole autocorrelation function is more long
ranged. 1In the dipolar case, the calculation was broken down into its three
components corresponding to correlations between the same pair of particles,
two different pairs sharing one particle in common, and two totally different
pairs. A similar breakdown in the stress case would help indentify the
contributor to the slow decay.

Hopefully, these studies will ultimately lead to a model for the molasses
tail, but it is unlikely to be of simple hydrodynamic origin. Such a model is
of particular interest in the theory of glass formation. A proper dynamical
theory of the glass transition identifies the stable amorphous state as the

point at which the viscosity becomes infinite along the metastable fluid

branch [11]. However, to predict the cooling rate necessary to prevent
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crystallization requires knowledge of the rate of growth of the molasses tail
for a cluster the sﬁze of a critical solid nucleus compared to the rate of
formation of that critical sized nucleus. That is, one needs to know the rate
of decay of the molasses tail for the viscosity at the appropriate wave vector
so that it can be compared to the rate at which the system tries to

crystallize.

4. LORENTZ TAILS

The tails in the Lorentz gas are of a still different nature than the
ones discussed so far. They are illustrated in Fig. 1d and are characterized
by a slow decay in the negative region of the velocity autocorrelation
function and can be observed at all densities of the random scatterers, even
when the diffusion coefficient vanishes, and for all sorts of different types
and arrangements of the scatterers. We shall confine our discussion to two
dimensional systems since these are the most interesting in the sense that
sometimes they behave 1ike one-dimensional systems that have zero diffusion
coefficients even in the low density limit and sometimes they imitate three
dimensional systems with vanishing diffusion coefficients only at high
density, above a percolation density. The class in which the tails fall
depends on the restriction on the degree of freedom of motion that is imposed
on the model. We shall also confine our dicussion primarily to hard square
and hard disk scatterers in various random arrangements such as overlapping
and non-overlapping. For squares we shall also consider various random
arrangements of the squares on a chess board and, furthermore, not only
impenetrable squares. The latter is of interest as a model for scattering of

electrons in a two dimensional metallic fluid as proposed by Anderson, and



hence we also discuss the quantum mechanical version of the Lorentz gas. 1In
the Anderson Model, the question again concerns whether or not it falls in the
one dimensional class, that is, whether the resistance of a fluid metal film
never vanishes.

The negative tails in the Ehrenfest wind tree model can be ascribed to
the higher than random probability of return of the particle (the wind) to its
point of origin {12]. The trees in that model are squares placed with their
diagonals along either the x or y axis. The particles are also started off
moving in only the x or y direction and because of the geometry will
subsequently confine their motion to these two directions only. 1In the
overlapping version of the Ehrenfest model it can then be shown by graph
theoretical methods that the diffusion coefficient vanishes even in the low
density 1imit with a power law tail whose exponent is a known function of
density. The vanishing of the diffusion coefficient arises because sooner or
later a particle will exactly collide at the intersection of two overlapping
squares, where upon it must exactly retrace its path back to the origin. This
graph theoretical prediction was confirmed by computer simulation [12]. This
restricted motion model hence falls in the one dimensional class.

In the case of non-overlapping squares in the Ehrenfest model, the
analysis yields a nonvanishing diffusion coefficient with a tail of the same
type as in the overlapping case but with different constants in the functional
density dependence. Also in the case of overlapping disks, the diffusion
coefficient is finite below the percolation density, again with a tail of the
same form with still different constants both above and below the percolation
density. 1In all these cases, whether the particle is trapped or not, there
are negative tails caused by the higher than random probability of return

paths, but the power law that describes the tail is first of all not universal
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since it depends on the density of the fixed random scatterers and secondly
differs in detail in the constants depending on the shape of the objects that
do the scattering on the intermolecular potential. This is to be contrasted
with the hydrodynamic tail where a universal mechanism determines the power
law with a power that depends only on the dimensionality.

The graph theoretical arguments so far have only been able to predict the
power law constant in the disk case in the low density limit [12]. The mode
coupling or hydrodynamic-1ike models predict that this low density power law
constant holds universally at all densities and for all shapes of scatterers.
This ignores the known difference in the constant between squares and disks
even in the low density limit. Furthermore, this disagrees with computer
simulation results which show a decided density dependence in the power law
behavior at long enough times where the lack of a density dependence should
have become apparent. It thus appears that the power law decay of the tail
depends on the topological details and that hydrodynamic scaling or
renormalization arguments can not be applied. Such arguments have also been
used for the quantum Lorentz gas and the conclusions therefore are hence
suspect.

Rigorous mathematical anaylsis of the disk Lorentz gas are, in fact, of
topological origin, but so far, only very limited in scope. The only relevant
proof is that in periodic space, the tail is exponential in character [14].

In periodic space you do not have random scatterers and, indeed, as Fig. 2
shows in the case of an ordered high density solid consisting of disks, the
envelope of the oscillating velocity autocorrelation function is of
exponential character. This is to be contrasted with the disordered
non-overlapping disk solid where the velocity autocorrelation function after a

few oscillations has a power law tail.
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We now return to the question of when a diffusion constant exists.
Rigorous arguments in favor of the existance of a diffusion constant have been
made for the Lorentz gas but unfortunately only under the restriction of the
Boltzmann-Grad 1imit [15]. 1In that 1imit, long retracing trajectories are
eliminated by a finite free path cut off. Hence, this theorem cannot
distinguish hetween the overlapping square and disk model. 1In the latter,
because particles can move in all directions, the probability of exactly
colliding at the intersection of two disks is much lower (zero measure) so
that the diffusion coefficient exists, but nevertheless, the probability of
returning is sufficiently high to produce a long tail. Thus, the disk case
falls into the three dimensional class. There are variations of the square
model that fall in between the Ehrenfest and disk case that are presently
under investigation to determine in which category they belong. One such
variation is randomly occupied squares on a chessboard where the particle can
start off in any direction. A variation on that is that the randomly blocked
squares can only be among the black squares of the chessboard, so that squares
can only touch occasionally at their corners.

These square models are artifical. However, if scaling were to work,
that would not matter. In the band theory of metals such square models are a
natural extension to two dimensions of the repeated square-well square mound
potential used in one dimensional versions. It can be shown in one dimension
that if the potential is regular, that is the height and width of the
square-wells and square-mounds are repeatedly the same, a metallic conduction
band results. On the other hand, it can be shown that if the depth of the
square-well and the height of the square-mound are randomly selected between
bounds, then the diffusion coefficient vanishes and the particle is bound no

matter what its energy is relative to the mound. Anderson has argued that the
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two dimensional version of this, where the squares on a chessboard have random
heights and depths between bounds, behaves as the one-dimensional model [16]).
Although the proof in one dimension is rigorous, the one in two dimensions
assumes the validity of scaling. It is just this scaling that has been
questioned for classical Lorentz gases. We have therefore started to
investigate two aspects of the Anderson model. The first one is the classical
1imit of that model to test whether it follows scaling and whether it conforms
to the Anderson prediction of localization no matter what the energy of the
particle is. The preliminary results are presented in fig. 3 and are negative
on both counts. Given the Bohr correspondence principle one could still argue
that Anderson might be right if the 1imit of Plank's constant going to zero is
not approached uniformly. There are precedents for the limiting process and
the 1imit being different, particularly for discontinous potentials. In the
classical 1imit of the Anderson model, three different regimes can be
recognized. When the energy of the particle is less than half the maximum
possible mound height or depth, the particle appears to be trapped, leading to
an oscillating and rapidly decaying velocity autocorrelation function. If the
energy of the particle is in between half and the maximum mound value, the
particle diffuses with a long negative power law tail, while with an energy
above the mound, the diffusion coefficient is enormous due to a positive power
law tail. The power law of the tail appears to be energy dependent, thus
making scaling inoperative.

The second aspect of the Anderson model investigated is its dynamical
aspects. That is, we solved the time dependent Schriédinger equation for a
particle propagating through a random arrangement of overlapping disks in
order to confirm a conjecture; namely, that at long times such a quantum

mechanical system has the same behavior as a classical system provided the
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particle is not trapped. A loose argument in favor of this is that letting
t go to zero is equivalent to letting time go to infinity. A slightly more
serious argument is to write the time dependent Schrddinger equation in terms

of an amplitude A and a phase S, that is

(a.1) 16 32 - _62/2m 924 + Vo
and ¢ = Ae‘S/h

so that under this Madelung transformation

- -
4.2) 2 L 9.(A% s/m) =0
at
2 2 2
as , (99)° . _ w2 eéA
(4.3) at + >m + V = 5 A

If 5 is set to zero in these two equations, we recognize that they
reduce to the classical Hamilton-Jacobi equations if vS/m is interpreted as
a velocity. The question then is under what circumstances does VZA/A
vanish, so that the condition under which a single particle quantum system
behaves classically can be specified. If we make the reasonable assumption
that the probability distribution, w*w=A2 is Gaussian at long times,
that is w*w =C exp(—le(xz)), with a half width <x2> = | ¢*x2¢d3 =
Bt™ which has a long time tail with a positive power «, then VZA/A =
-1/8t*. Thus the v2 A/A term vanishes in the long time 1imit unless
a = 0, in which case the particle is trapped since (xz) is bounded.

Note that even if o is between zero and unity and hence the diffusion

coefficient (xz)/t vanishes, the conjecture still holds because the wave

function is still spreading.
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The weakest point in the above argument in that w*w is a smooth
Gaussian. For any individual experiment the wave function is locally not
smooth, for example near a scatterer. However, for an ensemble average, the
assumption is likely to be valid. Thus we have committed the crime of
interchanging differentiation and ensemble averages, but we are in good
company. Since as fluctuation theory only holds for an average velocity
autocorrelation function, any individual velocity changes upon collisions can
be enormous. We thus believe that the tail in the gquantum and classical
velocity autocorrelation functions have the same power law. The numerical
evidence given in Fig. 4 is as yet too crude to say this with confidence. If
it proves to be correct, an enormous amount of computer time could be saved in
the investigation of tails in the quantum case, since the equivalent classical
systems run orders of magnitude faster.

There are two more points to be made with respect to quantum
calculations. One is that in the following paper we present another
conjecture that would be very useful in chemical rate calculations; namely,
that in steady state calculations, the long time behavior of the probability
density is the same in real and imaginary time calculations. The latter are
very much easier to implement. The other point is that very convincing
numerical quantum mechanical calculations have been made that confirm
Anderson's localization prediction in two dimensions [17]. The criticism that
can be leveled at these calculations is that they are quasi-one-dimensional,
because in the narrow strips they investigated, the correlation length near a
possible critical point exceeded the width of the system. A proper
extrapolation to large two dimensional systems requires that in that process

the width to correlation length ratio be kept constant.
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5. GENERALIZED HYDRODYNAMICS

One of the consequences of the long time tails is that none of the Taylor
series expansions of the transport coefficients, such as in density,
temperature, wavelength, frequency, gradients, etc. exist. As an illustration
of the divergences, the linear Burnett coefficients for diffusion for the
Lorentz gas will be discussed, because this is the only case for which the
expansion could be re-expressed so that it is convergent. The reason for the
divergences is that, because of the long time memories which the tail
represents, the distribution of distances a particle travels in a givén time
is not Gaussian except in the infinite time 1imit. 1In that 1imit, the second
moment of that Gaussian, or the half width, determines the diffusion
coefficient. However, the next moment or cumulant, which is the first Burnett
coefficient, [(Ax4) -3« x2>2]/t, exists only if the distribution approaches
the Gaussian as a Gaussian, which, because of the long memory effects, is not
the case [18]. Another way to see the divergence is to utilize the dimensional
arguments by which the tail for the diffusion coefficient was analyzed. If
(sz)/t had a tail of t ¢, then (Ax4)/t must have a tail one power of t
higher, namely t_°+]. Indeed, the computer results for the Lorentz gas
confirmed that each successive Burnett coefficient has a tail one power of t
higher than the previous one and thus sooner or later the higher ones will
diverge.

The Burnett coefficients measure the dependence of the transport
coefficients on the size of the relevant gradient, that is, on the wavelength
of the fluctuation. The Burnett coefficients are also the coefficients that
appear in the Chapman-Enskog expansion for the Boltzmann equation and in the

higher order corrections to Fick's law for diffusion



-16-

af(x,t) _

(5.1) 3t

D
ax X

where f is the distribution function, and B the first linear Burnett
coefficient. The proper generalization of Fick's law that leads to a
redefinition of the Burnett coefficients which is well behaved is shown both

by computer simulation [18] and graph theoretical analysis to be

t 2 t 4
(5.2) i%-—tl=j p(t—t')a—;—dt' + 31 p(t-t')a——:-dt' +
0 ax 0 ax

If the velocity autocorrelation function, p, is short ranged, then the
expression reduces to the older theory. 1If that is not the case, a non-local
in time memory function that is both non-local in time as well as sparse must
be introduced to obtain a convergent series. That memory function has not
been firmly established. 1In the Lorentz gas with stationary scatterers such
non-local spatial correlations can not develop. Another simplification in the
Lorentz gas is that all the higher Burnett coefficients have the same memory

function, which may not be the case in fluids. For,the non-linear Burnett

22
coefficients, namely coefficients of the form of (Q—i

2) , even the appropriate
ax
fluctuation dissipation expression of the Kubo form has not yet been

formulated, although it too is expected to diverge.

Even though the dependence of the generalized transport coefficients on
the wavelength, the frequency, and the amplitude of the fluctuation is not
analytic, there exists fluctuating hydrodynamic formulations for these
generalized coefficients that are amenable to calculation by molecular
dynamics [19] and which determine the value of the transport coefficients for
specific values of the wavelength and the frequency, but, as mentioned above,

this is not the case for the ampiitude. The latter formulation is being
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worked on, and thus we can only discuss generalized linear transport theory.
The purpose of generating these generalized linear transport coefficients is
to replace the constant transport coefficients in the Navier-Stokes equations
by them so as to introduce a length and time scale into the hydrodynamic
equations. From that it is possible to learn to what small distance and short
time scales hydrodynamics can be pushed. We already know from the
hydrodynamic model for the tail that hydrodynamics applies on a submicroscale
and at less than picosecond times. We also know that in order to explain the
negative feature in the velocity autocorrelation function near solidification
densities by a hydrodynamic model a non-local wavelength and frequency
dependent viscosity is required. The primary cause of this non-locality in
time of the viscosity is the molasses tail. We furthermore know that such a
viscosity is required to explain shear mode propagation observed in the fluid
phase near solidification in the neutron scattering function.

The only hydrodynamic problem actually solved so far with generalized
transport coefficients is the Stokes problem of an infinitely massed sphere
falling in a fluid, in order to find out what the corrections to Stokes law
would be if the sphere was of atomic dimensions [19]. Indeed, it was found
that the corrections were small, only about 30% for the friction coefficient
compared to the macroscopic sized sphere. In general, it is extremely
difficult to solve the Navier-Stokes equation with non-local transport
coefficients. It is hard enough to soive the ordinary Navier-Stokes equation
with constant coefficients even when the non-linear (in the square of the
velocity) term that leads to hydrodynamic instabilities such as turbulence is
left out. Usually, further simplifications such as incompressiblity or
invicidness have to be introduced to simplify the mathematics. Yet,

frequently the physical situation is even more complex, particularly in those
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leading to hydrodynamic instabilities. Then, the fluid often contains regions
where the gradients are steep. However, even the equations to describe that
situation are not yet formulated, let alone numerically tractable.

There now emerges a possibility to circumvent, at least for some physical
situations, this complex program of calculating the linear and non-linear
generalized transport coefficients and introducing them into the conservation
laws, leading to Navier-Stoke type of equations that are computationally
difficult to solve. That scheme takes advantage of the earlier observations
that hydrodynamics works on an atomic scale; namely, it suggests to simulate
via molecular dynamics directly the hydrodynamic problem. Thus, instead of
solving the Navier-Stokes equations, solve the Liouville equation for perhaps
100,000 particles for initial conditions which mock up the physical
situation. Encouraging results in that direction have recently been obtained
for a plate representing a sateilite entering the earth's atmosphere near
sound speed velocities [20]. Using 40,000 particles to represent the three
dimensional medium allowed the system to be some one hundred mean free paths
wide. The solid plate width was a substantial fraction of the width of the
system. The velocity field and streamlines that were calculated by molecular
dynamics showed clear evidence of the alternate vortex shedding phenomenon
leading to realistically working wakes behind the plate. The comparable
hydrodynamic problem has yet to be solved. It appears that as computers can
handle bigger and bigger molecular dynamic systems for longer and longer
times, the direct simulation of complex hydrodynamic phenomena is a practical
possibility. In the above problem it would have been possible to represent
the plate and hence the solid-fluid boundary conditions more realistically by
having the solid plate made up of particles as well. What may ultimately be

most effective is to solve the hydrodynamic problem on a molecular scale unti)
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the non-linear and memory effects have disappeared and then feed that
molecular dynamic solution as an input to the Navier-Stokes equation to pursue
the problem to macroscopic distance and time scales.

In this connection it is worthwhile to briefly summarize under what
circumstances one needs to use what form of linearized, generalized
hydrodynamics, and where one only needs ordinary hydrodynamics. That is,
where ordinary (k = 0, w = 0) transport coefficients suffice. For
orientational purposes ko = 2r or 1/kc ~0.15 represents the atomic spacing and
V/VO = 5 corresponds roughly to the critical liquid-gas point volume of a
fluid, while V/V0 = 1.5 is the fluid-solid coexistence volume. As can be seen
from Fig. 5, ordinary hydrodynamics works beyond some 20 intermolecular
spacings or some 100 A at all densities. For smaller distances, the
hydrodynamic relaxation time, (vkz)—], is not long compared to the
molasses tafl relaxation time and viscoelastic effects appear and a time or
frequency dependent viscosity needs to be used. At lower densities, however,
where there is no significant molasses tail, such a region never appears nor
does there appear a region where both non-locality in space and time has to be
taken into account. However, when the wave number gets to be such that
wavelengths less than an intermolecular spacing are considered, the continuum
approximation of hydrodynamics starts to breakdown. On the other hand,
kinetic theory becomes valid and hydrodynamics can be converted to kinetic
theory by the device of using wavelength dependent transport coefficients.
However, when the distances to be considered are smaller than a mean free

path, the whole approach breaks down.
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FIGURE CAPTIONS

Schematic diagrams for different tails in 2 dimensions.

(a) The velocity autocorrelation function for fluids at intermediate
densities leading to a hydrodynamic tail.

(b) The velocity autocorrelation function for fluids near
solidification.

(c) The stress autocorrelation function for fluids near
solidification leading to a molasses tail.

(d) The velocity autocorrelation function for the Lorentz gas with a

geometry dependent tail.

The velocity autocorrelation function for an ordered disk Lorentz gas
contrasted with the one for a disordered non-overlapping solid at the
same densty, A/Ao = 1.1 where Ao is the area at close packing. The

solid line is an empirical power law fit to the disordered case. The
velocity atuocorrelation function is normalized to unity at zero time

and time is given in terms of collision times.

Comparison for the classical version of the two dimensional Anderson
model of the velocity autocorrelation function at three different
energies relative to the maximum scattering potential, Vo. The solid

1ines represent the case for 1.1, the dotted line for 0.9, and the

dashed line for 0.4.
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Fig. 4 The mean square distance traveled for a quantum particle in the two
dimensional Anderson model as a function of collision time in units of
the disk radius, r, at a value of nr2 = 0.24 énd an energy = 10 in
f/mr units, where n is the number density of scatterers. The slope
at long times corresponds to the diffusion coefficient, which is

comparable to the classical one.

Fig. 5 Schematic diagram denoting the various regimes of validity of
different forms of generalized hydrodynamics for hard sphere fluids
depending on the density, V/Vo, given as the volume, V, relative, to
the close packed volume Vo, versus the reciprocal wave number, k,

times the hard sphere diameter o.
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